

D-Bug #3316

Command Based
Programming
How to organize your robot code effectively

Overview

● What Is command based programming?
● Subsystems
● Commands
● Command groups
● The command scheduler
● Structuring a command based robot project
● Joysticks and HumanIO

What Is Command Based
Programming?

The basics

Command Based programming

Command based programming is a design pattern, a general way to design the structure of your robot code.

There are 2 core concepts in command based programming: Subsystems and Commands.

Each command is linked to at least one subsystem.

Each subsystem can (usually) run only one command at a time.

 New Project
Get your VS Code ready

Open VS Code and create a new command
based project.

 Subsystems
Our first building block

Subsystems
In a nutshell, subsystems are the software equivalent of hardware mechanisms on the robot.

They encapsulate all the actuators and sensors which make up a mechanism into a single unit
which can be easily accessed.

Here are some examples of subsystems we used for Mercury in 2019:
● Drivetrain
● Elevator
● Panel Mechanism
● Cargo Intake
● Cargo Ejector

Subsystem Structure

public class ExampleSubsystem extends SubsystemBase {

 public ExampleSubsystem() {

 // Constructor stuff goes here

 }

 @Override

 public void periodic() {

 // This method will be called once per scheduler run

 }

}

Adding some hardware
public class ExampleSubsystem extends SubsystemBase {

 private DBugVictor _victor;

 public ExampleSubsystem() {

 this._victor = new DBugVictor(0);

 }

 @Override

 public void periodic() {

 // This method will be called once per scheduler run

 }

}

Private as we want to
encapsulate the hardware

Initialized in the
constructor

Public Methods

public double getOutput() {

 return this._victor.getMotorOutputPercent();

}

public void setOutput(double percent) {

 this._victor.set(ControlMode.PercentOutput, percent);

}

Public methods allow us to control the subsystem’s components from the
outside and to receive data about its current status.

 Coding Time
Making a basic subsystem

Create an elevator subsystem

● The elevator has 3 states: TOP, INTERMEDIATE
and BOTTOM. tip: use an enum

● Define the following sensors and actuators:

● The subsystem has 3 public methods:

○ setState - sets a state and sets the victor
to the correct output

○ zeroMotor - sets victor output to zero

○ getState - returns the current state of the
elevator (assume that 0 ticks from the
encoder = BOTTOM, and 10 tick = TOP)

Object Type PORT

VictorSP PWM 0

Encoder DIO 0, 1

 Commands
Building upon our subsystems

Commands

At its core, a command is an action performed by a subsystem.

The command uses our subsystem’s public methods to perform these actions.

Here are some examples of commands we wrote in 2019 for the Cargo Intake mechanism:
● CargoIntakeOpen
● CargoIntakeClose
● CargoIntakeSetRollers

Command Structure

We start our command with a constructor.

After Which we have 4 default methods:
● Init
● Execute
● Is Finished
● Fin

public class SetArmState extends CommandBase {

 private ArmState _wantedState;

 private final ArmSubsystem _armSubsystem;

 public SetArmState(ArmSubsystem armSubsystem, ArmState wantedState) {

 // This line will be explained later

 this._armSubsystem = armSubsystem;

 addRequirements(this._armSubsystem);

 this._wantedState = wantedState;

 }

 // Default methods go here...

}

 1/4 Init

The init() method is called once when the command is first scheduled

@Override

public void init() {

 this._armSubsystem.setArmState(this._wantedState);

}

 2/4 execute

The execute() method is called repeatedly while the command is running.

@Override

public void execute() {

 // Empty in this example

}

 3/4 is finished

The isFinished() method determines whether our command should continue running or not.

The method is called repeatedly while the command is running similar to the execute method.

When the method returns true fin is called and the command ends, but if false is returned the
command will continue as usual.

@Override

public boolean isFinished() {

 return this._armSubsystem.getArmState() == this._wantedState;

}

 4/4 end

The end() method is called once when the command ends.

The value of interrupted depends on whether the command was interrupted,
either by another command or by being explicitly canceled.

We can use this value to react differently when the command was interrupted.

@Override

public void end(boolean interrupted) {

 if (!interrupted) System.out.println("All good");

 else System.out.println("INTERRUPTED!");

}

Command Flow

 Advanced command features
Requirements and Default Commands

requirements

Usually you’d want only one command to run on each subsystem at a time.

For example to prevent two commands from setting the same motor to different outputs at
the same time.

For that reason we have requirements, when several commands require the same
subsystem only one of them can run at a time.

Commands can also require more than one subsystem (see command groups section).

Adding requirements

public class ExampleCommand extends DBugCommand {

 private final ExampleSubsystem _exampleSubsystem;

 public ExampleCommand(ExampleSubsystem exampleSubsystem) {

 this._exampleSubsystem = _exampleSubsystem;

 addRequirements(this._exampleSubsystem);

 }

}

We define our subsystems in
RobotContainer.java and pass them as
arguments like soWe can pass addRequirements more

than one subsystem if needed

Default Commands

Default commands run automatically whenever a subsystem is not being used by another
command.

A good example is the drivetrain subsystem, where if no command is running we’d like to
return control of the drivetrain to the human driver by calling the TankDrive command.

Setting default commands is done like so:

exampleSubsystem.setDefaultCommand(exampleCommand);

 Coding Time
Time to command

Create the SetElevatorState command. Make sure it:

● Requires the elevator subsystems

● Receives a wanted state in its constructor

● Sets the elevator to the wanted state

● Finishes only when the desired state is reached

Next add some prints like“SETTING ELEVATOR FROM X
TO Y”.

Add a public get method for the command in
RobotContainer. Then, schedule the command in
teleopInit and run the simulation.

Note: to schedule a command call it’s schedule method

m_robotContainer.getSetElevatorCommand(state).schedule();

 Command Groups
The true power of commands

Command Groups

A command groups is made up of two or more commands in a certain order.

Command groups allow us to run multiple commands simultaneously or one after the other.

Examples:
● Collect
● Shoot
● Eject

WPILIB offers 4 types of command groups.

A sequential command group runs a list of commands in sequence.

It ends after the last command in the sequence finishes.

 1/4 Sequential Group

time

DriveToPosition

AimWithVision

Shoot

start end

AutoShoot

Code Example
public class ExampleSequntial extends SequentialCommandGroup {

 public ExampleSequntial() {

 addCommands(

 new RunsFirst(),

 new RunsSecond(),

 new RunsThird()

);

 }

}

// Schedule the command group like you do with a command

new ExampleSequntial().schedule();

 2/4 Parallel Group

A parallel command group runs a set of
commands at the same time.

It ends when all commands have finished.

time

SetArmState(OPEN)

SetElevatorState(BOTTOM)

StartRollers
(instant)

start end

Collect

Code Example

public class ExampleParallel extends ParallelCommandGroup {

 public ExampleParallel() {

 addCommands(

 new TheOrderDoesntMatter(),

 new AllCommandsHere(),

 new RunSimultaneously()

);

 }

}

 3/4 Parallel Race Group

The parallel race group is much like a parallel command group.

However, the race group ends as soon as any command in the group ends, all other commands
are then interrupted.

AnotherCommand

time

SomeCommand

SomeOtherCommand

start end

Parallel Race Group Example

Code Example

public class ExampleParallelRace extends ParallelRaceGroup {

 public ExampleParallelRace() {

 addCommands(

 new AllCommandsRunSimultaneously(),

 new WhenACommandEnds(),

 new AllOtherEndAsWell()

);

 }

}

 4/4 Parallel Deadline Group
The parallel deadline group is also similar to the parallel command group.

However, the deadline group ends when a specific command (the “deadline”) ends, all other commands
are then interrupted.

AnotherCommand

time

DeadlineCommand

SomeOtherCommand

start end

Parallel Deadline Group Example

Code Example

public class ExampleParallelDeadline extends ParallelDeadlineGroup {

 public ExampleParallelDeadline() {

 super(

 new DeadlineCommandFirst(),

 new AllOtherCommands(),

 new ComeAfterwards()

);

 }

}

First command is always
deadline command

Nested Command Groups

Command groups are also commands. As such we can put one in place of a regular
command to make nested command groups.

public class ExampleNestedGroup extends SequentialCommandGroup {

 public ExampleNestedGroup() {

 addCommands(

 new RunsFirst(),

 new ParallelCommandGroup(

 new BothRun(),

 new Together()

),

 new RunsThird()

);

 }

}

public class ExampleNestedGroup extends SequentialCommandGroup {

 public ExampleNestedGroup() {

 addCommands(

 new RunsFirst(),

 parallel(

 new BothRun(),

 new Together()

),

 new RunsThird()

);

 }

}

Does the same and
easier to read

The full Flow

Coding Time
Grouping commands

Create 2 new subsystems: IntakeArm and IntakeRollers.

IntakeArm:

● Has 3 states: OPEN, CLOSED and INTERMEDIATE

● Has one victor and two micro switches: one to
detect the OPEN state and one for CLOSED state

● Its public methods are: setState, getState and
zeroMotor

IntakeRollers:

● Has 3 states: IN, OUT and OFF

● Has one victor

● Its public methods are getState and setState

Object Type PORT

Elevator VictorSP PWM 0

Intake Arm VictorSP PWM 1

Intake Roller VictorSP PWM 2

Encoder DIO 0, 1

Intake Arm Open MS DIO 2

Intake Arm Closed MS DIO 3

Your very own command group

Next create two commands: SetIntakeArmState and SetIntakeRollersState. Their structure is like
SetElevatorState. Remember to add prints!

Finally we can build the command group. Create a new Sequential command group called Collect
which does the following:

1. Sets elevator state to BOTTOM

2. Sets arm state to OPEN and rollers state to IN simultaneously

3. Print “Command Group Finished!”

Run the simulation and see the results.

 The Command Scheduler
Taking a look under the hood

The Command Scheduler

The Command Scheduler is the class responsible for actually running commands.
Some of its tasks include:

● Adding newly scheduled commands
● Running already scheduled commands
● Removing finished or interrupted commands
● Running subsystem periodic() methods
● Check if a button has been pressed (more on that later)

Using the Command Scheduler

The command scheduler is a singleton, we can access it like so: CommandScheduler.getInstance().

With the scheduler object we can cancel commands, get the time passed since they were
scheduled and more, but more importantly we can control the scheduler itself.

For example, in robot periodic we call CommandScheduler.getInstance().run() to run the scheduler.

The schedule Method
In order to schedule commands we use it’s schedule
method like so:

On the right we see what actually happens inside the
scheduler object when we schedule a new command.

new ExampleCommand().schedule();

Each iteration the scheduler performs the following sequence:

1. Run each subsystem’s periodic method
2. Schedule commands from triggers (more on that later)
3. Run one iteration of each command’s flow
4. Schedule default commands

The Scheduler Run Sequence

 Project Structure
Structuring a command based robot project

Folder Structure

● We keep subsystems, command and command
groups each in their respective folder

● Joysticks related stuff go to Joysticks.java

● We define and call init from Robot.java

● Constants (like port numbers or fixed values) go
to Constants.java

Joysticks.java
public class Joysticks {

 private Joystick _leftJoystick, _rightJoystick;

 private XboxController _operatorJoystick;

 public Joysticks () {

 this._leftJoystick = new Joystick(Constants.Joysticks.LeftJoystick.port);

 this._rightJoystick = new Joystick(Constants.Joysticks.RightJoystick.port);

 this._operatorJoystick = new XboxController(Constants.Joysticks.OperatorJoystick.port);

 }

 exampleButton.whenPressed(new ExampleCommand());

 }

 public JoystickButton getOperatorButton(Button button) {

 Return new JoystickButton(this._operatorJoystick, button.value)

 }

 // Useful public methods go here (getLeftStickY() for example)

}

RobotContainer.java

● Declare subsystems and joysticks

● Define subsystems

● Define and init joysticks

public class RobotContainer {

 // Subsystems

 private ExampleSubsystem _exampleSubsystem;

 // HumanIO

 private Joysticks joysticks;

 public RobotContainer() {

 // Define subsystems

 _exampleSubsystem = new ExampleSubsystem();

 // Define and init joysticks

 joysticks = new Joysticks();

 configureButtonBindings();

 }

}

 Joysticks & Human I/O
Triggering some commands

Binding Commands to Triggers
We bind commands to joystick buttons in order to activate them.

// Step 1. Define the joystick

XboxController operatorJoystick = new XboxController(0);

// Step 2. Define the button

JoystickButton xButton = new JoystickButton(operatorJoystick, XboxController.Button.kX.value);

// Step 3. Bind button

xButton.whenPressed(new InstantCommand(() -> System.out.println("X BUTTON PRESSED!")));

Joystick port Button number

Binding method

Button Binding Methods

Full list of bindings can be found here

button.whenPressed(command) Called once when button is first pressed

button.whenReleased(command) Called once when button is released

button.whileHeld(command) Called repeatedly while button is held

button.toggleWhenPressed(command) Called once when button is first pressed and gets
interrupted after the second press

https://docs.wpilib.org/en/latest/docs/software/commandbased/binding-commands-to-triggers.html#trigger-button-bindings

 Convenience features
Some extra stuff to ease your life

The Double Colon Operator ::
WPILIB provides some prebuilt tools that can make commands easier to write and understand.

To use them we’ll first learn about the double colon operator (::) in java.

We use it to pass methods as parameters.
That way they can be later called by other parts of the code when needed.

command.withInterrupt(limitSwitch::get);

Object containing method
The method

() -> Lambda Expressions

// Short and easy way

new InstantCommand(() -> System.out.println("Hi!"));

For some cases we have to use “::”, but for simpler cases it’s easier to use lambda expressions.

// Needlessly long way

void sayHi() {

 System.out.println("Hi!");

}

new InstantCommand(this::sayHi);

Included Command Types

WPILIB includes pre-written commands to help with common use cases. For example:

● InstantCommand - executes a single action on initialization, and then ends immediately

● PerpetualCommand - runs a given command with its end condition removed, so that it runs forever
(unless externally interrupted)

And some which are useful in command groups:

● WaitCommand - does nothing, and ends after a specified period of time elapses
● WaitUntilCommand - does nothing, and ends once a specified condition becomes true

Full list of included commands here

https://docs.wpilib.org/en/latest/docs/software/commandbased/convenience-features.html#included-command-types

Command Decorator Methods
We can add additional functionality to commands by using some of their included methods.

Some notable decorators include:
● withInterrupt - adds a condition on which the command will be interrupted
● andThen - adds a method or command to be executed after the command ends
● alongWith - returns a parallel command group containing the command, along with all the

other commands passed in as arguments

Command justTheCommand = new ExmapleCommand();

Command commandWithTimeout = justTheCommand.withTimeout(5);

// Will be interrupted 5 seconds after being scheduled

commandWithTimeout.schedule();

Full list of command
decorators here

https://docs.wpilib.org/en/latest/docs/software/commandbased/convenience-features.html#command-decorator-methods
https://docs.wpilib.org/en/latest/docs/software/commandbased/convenience-features.html#command-decorator-methods

 Further Reading
Knowledge is power

Further Reading
● Command-Based Programming — FIRST Robotics Competition documentation

● Coding exercise github repo

https://docs.wpilib.org/en/latest/docs/software/commandbased/index.html
https://github.com/team3316/CBP-coding-exercise

